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Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simu-
lations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled
from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins
perform conditional quantumdynamics. Also,microwave pulses can change the sign of spin-spin couplings, aswell as
their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-
range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many
quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is
complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the
quest for a quantum simulator and a quantum computer.
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INTRODUCTION

The idea of using one quantum system under sufficient experimental con-
trol to investigate the static and dynamic properties of another, complex
quantum system that is difficult to access directly (1) has spurred the
development of proposals for universal quantum computing and for
quantum simulations. Devices for processing quantum information
promise new insight into pertinent scientific problems ranging from
quantum field theories, to molecular dynamics, to cosmology, to name but
a small sample (2–4). A universal quantum computer would be suitable
for tackling any of these scientific questions. More specialized quantum
simulations—already in close experimental reach—also promise ground-
breaking new insight into phenomena governed by quantum processes.

Recently, important experimental progress was demonstrated with
several auspicious, potentially scalable physical systems, including
trapped neutral atoms (5), propagating photons (6), superconducting
qubits (7), and spins in semiconductors (8). Trapped atomic ions offer
a level of quantum control of individual quantum systems that is un-
surpassed, and systems of coupled effective spins realized by trapped
ions are a powerful resource not only for universal quantum comput-
ing (9–11) but also for specific quantum simulations (12–19).

Here, we explore a system of effective spins represented by individ-
ual trapped ions that exhibit long-range spin-spin coupling. Such a
long-range coupling between effective spins can be induced by a spatial-
ly varying static or dynamic magnetic field leading to a state-dependent
shift of the ions’ internal states (14, 20–24) or by laser beams inducing
a state-dependent optical dipole force (10–19, 25).

In the case of magnetically induced coupling, coherent operations
are carried out using radio-frequency (RF) radiation, and the appli-
cation of global pulses is sufficient to control coherent interactions be-
tween spins, thus avoiding technical and physical challenges associated
with the use of laser light (26–31).

Quantum simulations carried out on a physical system that is par-
ticularly well suited for solving a particular problem are likely to yield new
insight that is not available from computations on classical computers. A
universal quantum computer could perform any such quantum sim-
ulation and, in addition, solve other problems that are intractable, for
all practical purposes, on classical computers (32–36). Various imple-
mentations of essential elements of such a device and even complete
quantum algorithms have been carried out (37), with atomic trapped
ions playing a prominent role.

Here, we take advantage of magnetic gradient–induced coupling
(MAGIC) between effective spins of trapped ions. We experimentally
realize different coupling topologies within a three–spin-1/2 system
and show ferromagnetic and antiferromagnetic interactions. All cou-
pling topologies are attained by individual ion control using microwave
(MW) pulses (38). Hence, during a quantum simulation or quantum
algorithm, one can easily and rapidly change (“on the fly”) from one
interaction to another. Furthermore, we also decouple any desired spin
from the rest of the system. This enables one to use a subset of the qubit
register as a quantum memory while simultaneously carrying out
conditional quantum gates with other qubits. In addition, the change
between coupling topologies enables the efficient implementation of
quantum algorithms that are useful for quantum information proces-
sing, which is demonstrated by realizing a coherent quantum Fourier
transform (QFT), taking advantage of simultaneous coupling between
three spins.
RESULTS

Experimental setup
171Yb+ ions are confined in a linear Paul trap with an axial trap frequen-
cy of n1 = 2p × 130 kHz and a radial trap frequency of 2p × 500 kHz.
After Doppler cooling, the ions form a linear Coulomb crystal (39).
Two hyperfine states of each ion’s ground state 2S1/2 represent an effective
spin 1/2. If this spin is formed using at least one magnetically sensitive
state, and in the presence of a static magnetic field gradient, effective spins
can be distinguished by their frequency for resonant excitation. Also, they
are coupled via a pairwise spin-spin interaction (14, 20–22, 29). If
the spin-up state is encoded in the magnetic sensitive level |2S1/2, F = 1,
mF = ±1〉 ≡ |↑〉, the (linear) Zeeman effect causes the internal energy of
spin i to depend on the ion position as ℏwi = gFmFmBB(zi), where gF
denotes the Landé factor, mF denotes the magnetic quantum number
(±1 for magnetic s± transitions used here), mB denotes the Bohr mag-
neton, and B(zi) denotes the magnetic field at qubit i’s axial position zi.
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The magnetic gradient present in our setup is 19 T/m (29). An
additional magnetic bias field and the trapping potential described above
result in magnetic fields at the ions’ positions of 0.1881(4), 0.4146(4), and
0.6432(5) mT. The corresponding addressing frequency separations are
about 3.2 MHz. Hence, each of these spins can be individually excited by
dialing in the MW frequency near 12.6 GHz, matching the respective
spin resonance (38).

The Hamiltonian describing the spin-spin interaction of N ions
reads (21, 22, 29)

HI ¼ �ℏ

2
∑
N

i; j¼1

i≠j

Jijs
ðiÞ
z sðjÞz ð1Þ

where ℏ denotes the Planck constant andsðiÞz denotes the z Pauli matrix
on qubit i’s subspace.

The mutual coupling strengths are given by

Jij ¼ ∑
N

n¼1
nnDinDjn ð2Þ

with the dimensionless constants Din ≡ ∂zwi
Dzn
nn

Sin. The dimensionless
entry Sin of the unitary matrix that diagonalizes the dynamical matrix
of the system is the scaled deviation of ion i from its equilibrium posi-
tion when vibrational mode n is excited. Hence, Din describes how
strongly the spin of this ion couples to the vibrational mode. Here,
Dzn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mnn

p
denotes the extension of the ground-state wave

function of vibrational mode n, which has the angular frequency nn,
and m is the ion’s mass.

Because the partial derivative of the internal energy of the spins
always occurs pairwise in the J-coupling strength between two spins
[(∂zwi) × (∂zwj) in Eq. 2], it is possible to control the sign of their mu-
tual coupling. If the two spins have their spin-up state encoded in dif-
ferent hyperfine levels |2S1/2, F = 1, mF = ±1〉, then their magnetic
quantum numbers mF differ in sign and, thus, their mutual J-coupling
will be negative. However, if the magnetic quantum numbers are
equal, the J-coupling will be positive.

When choosing (to first order) magnetically insensitive spin states,
|2S1/2, F = 0〉 ≡ |↓〉 and |2S1/2, F = 1, mF = 0〉 ≡ |↑〉 (referred to as the p
basis in what follows), all of the spins have the same resonance frequency
of the magnetic p transition; in addition, spin-spin coupling is suppressed.

Fully coupled three-spin systems
To experimentally determine the joint couplings within a three-spin sys-
tem, we observe its internal dynamics for different initial states. All spins
are encoded in the hyperfine levels |↓〉 ≡ |2S1/2, F = 0〉 and |↑〉 ≡ |2S1/2,
F = 1,mF = −1〉 (henceforth referred to as the s− basis). The dynamics
are studied using Ramsey-like experiments (see Materials and Methods),
where one of the spins is prepared in a superposition state, whereas the
other two are prepared in energy eigenstates. During a conditional evo-
lution time, the system is left to evolve according to the time evolution
U Tð Þ ¼ e�

i
ℏHIT, which results in a precession of the spin in the super-

position state, whereas the spins in energy eigenstates are left unaffected.
The spin precession is revealed by observing Ramsey interference fringes.
Because the conditional dynamics are slower than the inverse dephasing
time of a single spin, we apply 20 dynamical decoupling (DD) pulses
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
during the conditional evolution time to protect the dynamics (see
Materials and Methods) (40).

Exemplary results indicating conditional precession of spin 1 are
shown in Fig. 1. The resulting Ramsey fringes with spins 2 and 3
prepared in |↑〉

2
|↑〉

3 (the indices denote the spin) are shown in Fig.
1A for two different conditional evolution times (1 and 4 ms). As
one can see, the fringe minimum, which is found at p for vanishing
conditional evolution time, is shifted to smaller phases for increasing
conditional evolution time, which reveals the spin precession. One
may also notice a reduction of the fringe contrast, which can be ex-
plained mainly by dephasing because of magnetic field noise that is
not fully compensated by the present DD sequence. We measure
the dephasing time of a single spin as ts = 7.1(1.1) ms when 20
DD pulses are applied to each spin (see Materials and Methods).

This experiment is repeated for different input states of the second and
third spins and for different conditional evolution times. In Fig. 1B,
the acquired phase shifts conditioned on the initial states of spins 2
and 3 are shown. From these phase shifts Dϕ = JT, acquired by spin
1 during a conditional evolution time T, we obtain information about
the couplings among the system. For the symmetric input state |↑〉

2
|↑〉

3,
the time evolution of the first spin is described bye�iðJ12þJ13Þsð1Þz t=2, which is
a precession around the z axis at angular velocity J = J12 + J13. Hence,
from the observed phase shifts, we conclude that J12 + J13 = 2p × 52(9) Hz.
For the other symmetric state |↓〉2|↓〉3, the evolution corresponds to a
precession about the negative z axis at the same angular velocity J12 +
J13. For the antisymmetric input state |↑〉2|↓〉3, the time evolution is de-
scribed by e�iðJ12�J13Þsð1Þz t=2, and from the phase shifts, we conclude that
J12 − J13 = 2p × 21(9) Hz.

The other antisymmetric input state |↓〉2|↑〉3 causes a spin preces-
sion in the other direction at the same angular velocity. Here, the value
of the precession frequency derived from a fit is 2p × 16(9) Hz. For the
symmetric input states, the angular velocity is larger; hence, the
slopes extracted from a fit of the data are less affected by statistical
errors.

To measure the mutual coupling between two spins among the
three-spin system, we effectively suppress the third spin’s coupling
by selective recoupling (see Materials and Methods) (41). Here, an ad-
ditional spin echo (SE) p pulse is addressed to the third spin and
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Fig. 1. Conditional quantum dynamics in a fully coupled three-spin
system. (A) Ramsey fringes from the first spin after different conditional
evolution times (1 and 4 ms). The phase shift reveals the coupling to other
spins. Each data point represents the result of 50 repetitions of the experiment.
(B) For different initial states of the second and third spin and different
conditional evolution times, the acquired phase shift is plotted. From the slope,
information about the couplings can be deduced. Error bars represent SDs.
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cancels the phase shift due to this spin. From this, we reconstruct the
J-coupling matrix shown in Fig. 2A with all couplings being positive.

Changing the coupling topology
We realize spin systems with different signs of the couplings by coding
the spin states in different hyperfine levels. In contrast to the experi-
ments described above, one of the spin-up states is now encoded in
|↑〉 ≡ |2S1/2, F = 1, mF = +1〉, and this spin is realized by the magnetic
s+ transition of its ion. The J-coupling matrices of such systems are
reconstructed, and we summarize the results in Fig. 2 (B and C). The
topology from Fig. 2B features next-neighbor couplings of opposite
signs, whereas in the topology from Fig. 2C, the next-neighbor cou-
plings have the same sign.

As we have shown, single-ion control allows for preparing any spin
in different basis states, thereby tailoring the couplings in the system.
In addition, it is possible to change the spin states during a quantum
algorithm by application of MW pulses, which will change the cou-
plings accordingly. Therefore, the change between different couplings
can be performed on the time scale of the Rabi frequency W, that is,
nearly instantaneously on the time scale of the conditional evolution.
In these experiments, W ≈ 2p × 50 kHz.

We demonstrate this change between two bases by preparing the
first spin in a superposition state in the s− basis. Then, we transfer the
state by a sequence of MW pulses (see Materials and Methods) to the
p basis where it is decoupled from the rest of the spin system. After a
conditional evolution time, the spin state is transferred back to the s−

basis, and the coherence is probed with a Ramsey pulse as before.
Now, this spin does not acquire any phase shift that depends on
the other spins’ initial states. Because this spin is less affected by
magnetic field fluctuations, we measure its coherence time to be
tp = 50(10) ms when only a single DD pulse is applied. The coupling
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
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between spins 2 and 3 is, again, reconstructed by Ramsey-like ex-
periments, and experimental results are shown in Fig. 2D. In the con-
text of quantum information processing, such a system of two coupled
spins and one uncoupled spin with a long coherence time realizes a
quantummemory, while simultaneously, the other two spins may per-
form a conditional quantum gate.

Furthermore, it is possible to simultaneously suppress all couplings
within the system by transferring all the spin states to the magnetic
insensitive base (compare Fig. 2E). Experimentally, we protect the
product state of equal superposition states 1=

ffiffiffi
8

p ðj↓〉þ ij↑〉Þðj↓〉þ
ij↑〉Þðj↓〉þ ij↑〉Þ (hereafter, indices are omitted for simplicity) for 10 ms
and detect a preserved coherence, for instance, of the second spin having
a fidelity of 0.91(2).

Quantum Fourier transform
Fully coupled spin systems are a resource for quantum computation,
where each spin represents a qubit. We present the realization of an
example quantum algorithm: the QFT, defined with its action on an
orthonormal basis |0〉, |1〉,…, |N − 1〉

FN jn〉 ¼ 1ffiffiffiffi
N

p ∑
N�1

k¼0
e2pink=N jk〉 ð3Þ

We have chosen this particular algorithm because of its relevance
in providing exponential speedup as a subroutine in many quantum
algorithms (35, 42, 43). Previous realizations of the QFT in systems
based on nuclear magnetic resonance (44, 45) rely on single-qubit
gates and conditional two-qubit gates. A realization with trapped ions
was achieved using single-qubit gates, collective nonentangling gates,
and collective entangling gates (46). A semiclassical QFT, without
conditional two-qubit gates, using trapped ions is described by
Chiaverini et al. (47). Such a realization can be used, for example,
in the Shor algorithm (32), where the QFT is the last subroutine before
a projective measurement of the output state. Because only probability
amplitudes (and no relative phase information) need to be deduced, the
fully coherent QFT can be replaced by the semiclassical version in such
cases. However, there are existing algorithms in which the QFT or the
inverse QFT is not the final subroutine and phase information of the
output states is of further importance [for example, Harrow et al. (34)
and Wiebe et al. (36)]. In these algorithms, the QFT cannot be replaced
by a semiclassical version; hence, the fully coherent QFT is necessary for
their realization.

In physical systems that are described by an Ising-type Ham-
iltonian, usual realizations of the QFT demand for the suppression
of undesired couplings among the system during the conditional evo-
lution of two selected qubits. However, in general, it is favorable to
decompose the QFT into gates that can be realized naturally in the
Ising-type system, for example, single-qubit operations and waiting
times, during which the system evolves according to all the mutual
couplings (48–51). In this way, the available physical system is effi-
ciently used to achieve a reduced operation time and, consequently,
to improve the fidelity of the quantum process, if the physical system
is subjected to decoherence.

In what follows, we describe our gate set, which comprises a rota-
tion R(q), a phase gate F(f), and an entangling gate U(T). We will
also use phased rotations R(q, f), where the phase gate is absorbed
in the rotation according to the rule R(q, f) ≡ F(f/2)R(q)F(−f/2).
J23/2 = –40(5) Hz
J12/2 = –37(5)Hz

J13/2 = 28(5) Hz

J23/2 = 34(7) Hz
J12/2 = -39(5) Hz

J13/2 = –27(5) Hz
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+

Fig. 2. Different experimentally realized spin-1/2 systems. Spins are
symbolized by dots, and the base in which each spin is encoded is denoted
by s± and p, respectively. A line connecting two dots represents a J-coupling
between them, whereas ± indicates the sign of this interaction. Experimental
results are summarized in the right column. (A) All spins are encoded in the
same basis; hence, their coupling has a positive sign. (B and C) One of the
spins is encoded in a different base, which results in different interactions.
(D) It is also possible to decouple a selected spin while the remaining spins are
left coupled. (E) If the coupling of all spins is suppressed, their states are
preserved.
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The gate R(q, f) can be obtained with a simple phase shift in the driv-
ing MW field implementing R(q). We have

Rk q; fð Þ ¼ e�iq2 sðkÞx cosfþsðkÞy sinfð Þ ð4Þ

FkðfÞ ¼ e�ifsðkÞz ð5Þ

where the indices denote the qubit number and Rk(q) = Rk(q, 0).
The entangling gate is easily obtained from free evolution: We

leave the ions to evolve with no driving for a certain conditional evo-
lution time T

UklðTÞ ¼ eiJklT=2 s
ðkÞ
z sðlÞz ð6Þ

where Jkl represents the coupling strength for qubits k and l.
We derive the following sequence, which implements the QFT (up

to a global phase) based on single-qubit rotations and entangling gates

UQFT ¼ R2 A2; 3p4ð ÞR3
p
2 ;�p

2ð ÞU23 T3ð ÞR1 p; 3p16
� �

R2 A1; 3p4ð ÞR3 p;�3p
16

� �
U T2ð ÞR3 pð Þ

UðT1ÞR1ðpÞR2ðpÞR3ðpÞH1

ð7Þ

The derivation is described in more detail by Ivanov et al. (52) and in
Materials and Methods where the duration T3 and the pulse areas A1

and A2 are also discussed. For the typical experimental parameters of
the setup (29), one obtains the evolution times T1 = 3.69 ms, T2 =
0.22 ms, and T3 = 4.87 ms. Hence, the total duration of the algorithm
is 8.78 ms. For the pulse areas, one obtains A1 = 0.686p and A2 = 0.716p.

The sequence in Eq. 7 can be further optimized. We first note that
T2 is much shorter than the other conditional evolution times and can
therefore be neglected, which results in an infidelity on the order of 10−3.
By making use of the fact that the entangling gate and simultaneous p
pulses applied to all three qubits’ commute, we combine subsequent
pulses applied to a qubit whenever possible. The gate U23(T3) where
the first qubit’s coupling is suppressed could be realized by a change of
the qubit base, as shown in our experiments. However, for simplicity, it is
realized here by an SE pulse in the middle of the evolution time. An
additional p pulse compensates for the state change of the first qubit and
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
takes into account a phase gate that originates from the combination
of subsequent p pulses. The optimized sequence reads

Uopt
QFT ¼ R2 A2;

3p
4

� �
R3

p
2
;
3p
2

� �
R1 p;

27p
16

� �� �

U T3=2ð ÞR1 p;
p
2

� 	
U T3=2ð Þ

h i

R2 A1;
3p
4

� �
R2 p; 0ð ÞR3 p;

13p
16

� �� �
U T1ð ÞH1

ð8Þ

and the circuit is presented in Fig. 3. An additional SWAP13 gate that
interchanges the state of qubits 1 and 3 completes the QFT. This gate
is realized by just relabeling the qubits.

The chosen realization takes advantage of the fully coupled three-
qubit system and consists only of conditional free evolution times and
single-qubit gates (see Materials and Methods) (52). In comparison to
the serial decomposition of the QFT using two-qubit gates, which
would take about 23 ms in our setup, the duration of this efficient
sequence is only 8.6 ms. The relative advantage in terms of time grows
further with growing N (50).

A first validation of the desired quantum dynamics is achieved by
simultaneous Ramsey-type measurements after the three-qubit
register was prepared in one of the eight computational basis states
|000〉,|001〉,|010〉,|011〉,|100〉,|101〉,|110〉,|111〉. Because the QFT
transfers each computational basis state to a product state of super-
positions, we apply to each individual qubit a Ramsey p/2 pulse to
probe the qubit states. In Fig. 4, exemplary results for the input state
|010〉 are shown. The solid lines are fits to the data points, whereas the
light dashed lines represent the ideal outcome of the QFT. The Ramsey
fringes’ phases match the expected result of a QFT, which is also true
for all the other computational basis states chosen as initial states. The
average deviation between the expected and the experimentally obtained
phase is 〈dϕ〉 = −0.07(15) rad. The phase of each qubit is determined
by all couplings present in the three-qubit system. Therefore, we con-
clude that the conditional evolution times and single-qubit gates cho-
sen to implement the QFT match the couplings among the system.

Although the phases of the fringes match the expectations, their
contrast is significantly reduced. We explain this by dephasing during
the conditional evolution periods despite applying DD, by pulse im-
perfections of the 60 DD pulses applied during the complete QFT, and
by a limited single-shot readout fidelity (see Materials and Methods).
R( ,0) R(A1,
3
4  ) U(T1) 

R( ,
13
16  ) 

H 

U(T3/2) U(T3/2) 

R( ,2 ) R( , 16  ) 

R( , 4  ) 

R(2, 2  ) 

A2

Fig. 3. Circuit for the QFT. The circuit that realizes the QFT in our experiments consists of single-qubit rotations [R(q, f)] and conditional evolutions [U(T)]
of different duration. For technical reasons, single-qubit operations on different qubits are applied one after another, and the Hadamard gate (H) is realized
by two rotations [R(p/2, −p/2)R(p, 0)]. The additional SWAP gate that completes the QFT is realized by relabeling qubits 1 and 3 after the projective
measurement. During the optimization of the sequence, the conditional evolution time, T2 = 0.22 ms, was neglected. The whole sequence takes 8.6 ms
as a result of the conditional evolution times. The duration of the single-qubit rotations can be neglected because the Rabi frequency is about 2p × 50 kHz.
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The three single-qubit output fidelities for input state |010〉 are
F1 = 0.76(7), F2 = 0.86(4), and F3 = 0.84(4). If the output state is a
fully separable state, then the three-qubit state fidelity is simply given
by F1 × F2 × F3. For a general state, the three-qubit state fidelity F of
the state r right after application of the QFT is given by F = 〈y|r|y〉,
where |y〉 is the ideal outcome. We further quantify the performance
of the QFT by reconstructing this fidelity and obtain an average fidel-
ity 〈F〉 = 0.58(5). Fidelities of the QFT for all input states (the basis
states mentioned above and, in addition, for several superposition
states) are given in Materials and Methods. Because the QFTs of
the computational basis states are given by superposition states with
equal weights for each qubit, an average fidelity of 〈F〉 = 0.58(5) clearly
indicates nonclassicality. For comparison, an average fidelity of 0.53 =
0.125 can be achieved with classical states.

In addition to validating the process that realizes the QFT for com-
putational basis states and some exemplary superposition states, we
demonstrate that the algorithm correctly estimates the period of quantum
states. After initializing the register in the desired input state of interest,
the sequence is applied and a projective measurement takes place. The
probability of each possible outcome (|000〉,|001〉,…,|111〉) is recorded.
In binary notation, these states represent the integer numbers i = 0, 1,
2...7, which label the output states. The necessary SWAP13 operation
that completes the QFT is realized by interchanging qubits 1 and 3
during the analysis.

Figure 5 shows the results for the four input states |111〉,|+11〉,|++1〉,
and |+++〉, which are of periods 8, 4, 2, and 1, respectively. We
compare the experimental results both to the ideal expectation
and to simulations that take into account the experimental imper-
fections present in the setup. Suitable measures that allow for a
comparison of the experimentally determined probability pi with
the expected correlations qi are the squared statistical overlap
(SSO)gSSOðp; qÞ ¼ ð∑

i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pi � qi

p Þ2 and the distinguishabilityDðp; qÞ ¼
1� 1=2 ∑

i
pi � qij j (53).

As one can see, the SSO and the distinguishability for the different
states vary from 0.99(3) to 0.54(2) for the input states |111〉 and |+++〉,
respectively. The reason for this broad range is the different susceptibility
of different states to technical imperfections. One further observes that
the match of the classical measures of the SSO and the distinguishability
can be higher than the mean quantum state fidelities of 0.58(5) that have
been discussed above. This can be explained by the fact that these bench-
marks, in contrast to the quantum state fidelities, do not measure quan-
tum phase relations.
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
DISCUSSION

MAGIC makes it possible to coherently manipulate trapped ions
using exclusively MW and RF radiation for all coherent operations.
In similar laser-based experiments with trapped ions, signals control-
ling the coherent dynamics of ions are generated first in the MW or RF
regime; then, laser light is modulated using these signals. Here, we avoid
this detour via the optical regime, demanding the precise control of co-
herent light, and thus considerably simplify experimental requirements.
In addition, spontaneous scattering is practically eliminated, and the vul-
nerability of quantum logic operations to motional excitation is reduced.
The latter is true as long as the ions experience a harmonic potential,
which is the case for Doppler-cooled ions, as has been investigated in
much detail theoretically and in recent experiments (to be published).
Also, individual addressing of interacting spins is possible with un-
precedented low crosstalk (38).

We show that the spin-spin coupling topology can be experimentally
tailored to best suit a desired quantum simulation or computation, and
we have investigated different coupling topologies among an exemplary
three-spin system realized by single-ion control using MW pulses. We
demonstrate how to rapidly change the sign of the couplings in the
system. Furthermore, any spin can be decoupled from the remaining
coupled system. Thus, switching between the role of an ion as a memory
qubit, on the one hand, and a qubit conditionally processing quantum
information, on the other hand, is realized by simple MW pulses and
does not require physical relocation (shuttling) of ions or the use of dif-
ferent ion species.

Also, the effective magnitude of spin-spin coupling during a quan-
tum simulation or computation can be adjusted by varying the inter-
action time. In addition, the coupling strength can be varied by
adjusting the trapping potential (29) and the magnetic gradient.
0

0.25

0.5

0.75

1

E
xc

ita
tio

n 
pr

ob
ab

ili
ty

Qubit 1

Qubit 2

Qubit 3

0 π/2 π 3π/2 2π
Ramsey phase (rad)

Fig. 4. Exemplary results of a QFT. After the QFTwith input state |010〉, addi-
tional Ramsey p/2 pulses reveal interference fringes from every single qubit. The
experimental results (solid lines) are compared with the predicted outcomes
(dashed lines). Each data point represents 50 repetitions and error bars denote SDs.
0 1 2 3 4 5 6 7
0

0.5

1

Output state

Pr
ob

ab
il

it
y

A

γ
SSO

 = 0.99(3)
D = 0.92(2)

 111

 111

Theory
Simulation
Experiment

0 1 2 3 4 5 6 7
0

0.5

1

Output state

Pr
ob

ab
il

it
y

γ
SSO

 = 0.84(3)
D = 0.80(2)

 +11

B

0 1 2 3 4 5 6 7
0

0.5

1

Output state

Pr
ob

ab
il

it
y

γ
SSO

 = 0.64(2)
D = 0.64(2)

 ++1

C

0 1 2 3 4 5 6 7
0

0.5

1

Output state

Pr
ob

ab
il

it
y

γ
SSO

 = 0.54(2)
D = 0.54(2)

 +++

D

Fig. 5. Estimating the period of quantum states. (A to D) After appli-
cation of the QFT for different input states, a projective measurement takes
place. The measured probability of finding each possible output state is
shown (blue bars) along with the ideal results (gray bars) and with simula-
tions that take into account experimental imperfections of the setup (yellow
bars). The SSO S and distinguishability D are measures of the performance.
Each experiment is repeated 1250 times. The statistical error is too small to
be shown.
5 of 10



R E S EARCH ART I C L E

 o
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

In microstructured segmented ion traps (54), detailed control of
(quasi-)static DC potentials is possible. These potentials determine local
and global trapping potentials, thus allowing for control of the range of
interaction (for example, from long range to next-neighbor). At the
same time, larger magnetic gradients can be achieved in microstructured
traps. Thus, the use of such traps adds more versatility for realizing
coupling topologies suitable for quantum simulation and computation
(55–59).

A QFT that may serve as an essential ingredient of other quantum
algorithms is implemented here. We take advantage of simultaneous
coupling between all qubits, and a speedup of nearly a factor of 3 is
achieved for three qubits as compared with a decomposition of the
QFT into two-qubit gates.

The spin-spin coupling used here increases quadratically with larger
magnetic gradients. In recent experiments, a gradient of 150 T/m (60)
has been implemented, which would already yield an increase in coupling
strength by about a factor of 60, as compared to the experiments reported
here. In this case, the entangling gate time of the algorithm is reduced by
the same factor to about 140 ms, and DD is no longer required. Single-
qubit MW gates, as used here, have been previously realized with out-
standing fidelity (31, 61). Thus, a fidelity of the QFT higher than 0.99 is
realistic when using a larger magnetic gradient (seeMaterials andMethods).

Because of the generality of the method used here, which takes ad-
vantage of a fully coupled spin system, this approach is attractive for
other physical systems as well. A three-qubit processor could be used
as an elementary unit for distributed quantum computing (62). Also, a
relatively small quantum processor with qubits that serve at the same time
as a quantum memory and a quantum processor for simultaneous
conditional quantum dynamics is well suited as an essential element of a
quantum repeater (63).

Using a larger magnetic gradient would also be useful for quantum
simulations of various spin systems with flexible control of the cou-
pling topologies. Furthermore, the system and methods described here
are well suited for other quantum simulations, for instance, of lattice
gauge theories (64).
n A
ugust 4, 2016
MATERIALS AND METHODS

Spin precession and Ramsey experiments
We used Ramsey-like experiments to observe the ions’ internal coherent
dynamics and deduce the couplings among the spins from these mea-
surements. In this experiment, all of the spins were first prepared in
|↓↓↓〉. Then, one of the spins was prepared in a superposition state
jy〉 ¼ 1ffiffi

2
p j↓〉þ ij↑〉ð Þ. The other two spins were prepared in one of

the energy eigenstates {|↓↓〉, |↓↑〉, |↑↓〉, |↑↑〉}. During a conditional evo-
lution time T, the system evolved according to

UðTÞ ¼ eiðJ12s
ð1Þ
z sð2Þz þJ23s

ð2Þ
z sð3Þz þJ13s

ð1Þ
z sð3Þz ÞT=2 ð9Þ

Hence, the spins in energy eigenstates will not change their states,
whereas the spin in the superposition state will perform a spin precession
conditioned on the state of the other two spins. After the conditional
evolution time T, a Ramsey p/2 pulse was addressed to the spin in the
superposition state, and the spin’s state was measured. The phase of this
pulse was varied while repeating the experiment to record Ramsey inter-
ference fringes. The phase information of these fringes revealed information
about the spin state. Therefore, by observing the Ramsey fringes changing
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
their phase for a varying conditional evolution time, we deduced the
angular frequency of the spin precession.

For reconstructing the J-coupling matrix, we made use of the fact that
the J-coupling is equal to the precession velocity. To measure the isolated
mutual coupling between two distinct spins, we decoupled the third spin
from the remaining system. This can be achieved using the selective re-
coupling method (41). Here, a single SE p pulse is addressed to the spin that
shall be decoupled right in the middle of the conditional evolution time.
Hence, the other spins’ evolution that is caused by this individual spin is
effectively canceled. Like before, one of the coupled spins was prepared in a
superposition state, whereas the other was prepared in an energy eigenstate.
From the spin precession, the coupling among these two spins was deduced.

Pulse sequence to change between couplings
The pulse sequence that transfers the spin state from one base to an-
other is based on single-ion control with MW pulses. In the
experiments, we showed the transfer from the magnetic sensitive base
|2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = −1〉 (magnetic s‐ transition) to the
(first-order) insensitive base |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 0〉
formed by the magnetic p transition. The particular sequence for this
transfer of spin n consists of three MW pulses and reads

ppp
ðnÞ
s pp ð10Þ

where pp denotes a p pulse on the magnetic p transition and pðnÞs

denotes a p pulse on qubit n’s s transition. The phase of all pulses isϕ = 0.
When using this sequence to decouple a spin by transferring it

from the s to the p base, it is possible that a small detuning of the pulse
that prepares the superposition causes this spin to precess during the
conditional evolution time. To suppress this spurious effect, an SE p
pulse is included into the experimental sequence. After half of the
desired evolution time, the isolated spin is recoded back to the sensitive
base, and an SE pulse of phase ϕ = p/2 on the sensitive transition is
applied before it is recoded back to the insensitive base. Right after the
complete evolution time, the spin is again recoded back to the sensitive
base. Now, a possible Ramsey experiment can probe the state of this
spin n. In summary, the spin is recoded four times during the experi-
mental sequence to decouple it.

For the case where more qubits (if not all) are recoded, the
sequence in Eq. 10 is changed to

ppp
ð1Þ
s pð2Þs pð3Þs pp ð11Þ

Dynamical decoupling
The dynamics within the three-spin system are driven by J-coupling,
which is typically about 2p × 40 Hz for next-neighbor spins using a
static magnetic gradient of 19 T/m at a center-of-mass frequency, n1, of
the ions’ motion of about 2p × 130 kHz. Because the single spins’ co-
herences decay in the present experiment on the time scale of 200(100) ms,
these dynamics are slower than the dephasing. To stabilize the dynamics
and to enhance the coherence time, we applied DD pulses (40) during the
conditional evolution times. To keep the desired conditional dynamics
unaffected by the DD pulses, they need to be applied to all qubits simul-
taneously. Because the MW source used at present generates a single
frequency at a certain time and the qubits’ addressing frequencies differ,
the DD pulses were applied to the qubits one after another.
6 of 10
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The timing of the DD pulse sequence used to measure the J-coupling
matrix corresponds to a Carr-Purcell-Meiboom-Gill (CPMG) sequence
with 20 pulses, and the time evolution reads

½tpð1Þs pð2Þs pð3Þs t�20 ð12Þ

where t denotes a waiting time, pðnÞs denotes a p pulse on qubit n’s
magnetic s transition, and the exponent denotes a repetition of the
evolution in the brackets. The phase relation of the p pulses corresponds
to a Knill DD sequence (65).

Although more pulses may further enhance the coherence time
and hence the fringe contrast, after a certain duration, the pulse se-
quence becomes more and more susceptible to instrumental imperfec-
tions (40). In our setup, the pulse errors are consequences of a slow drift
of the spins’ addressing frequencies. With 84 pulses, for example, it was
possible to protect conditional spin dynamics for 11 ms (29, 40). Thus,
more pulses may enhance the contrast after 4 ms but, at the same time,
reduce it for shorter evolution times. In general, there exists an optimal
number of pulses for each evolution time. Twenty DD pulses turned out
to be a good compromise for evolution times between 1 and 5 ms, as
used here, to measure the conditional phase shift.

The realization of the QFT took 8.6 ms; hence, more DD pulses
were necessary to stabilize the dynamics during this period. During
the QFT, a total of 60 DD pulses were addressed to each qubit. Twenty
pulses were applied during the first conditional evolution time T1 and
40 pulses were applied during T3. These pulse numbers turned out to be
an optimal choice, and more pulses did not improve the performance in
terms of the fidelity. The reason is that for more pulses, the sequence
becomes more susceptible to instrumental errors, which counteract the
improvements due to a longer coherence time.

Derivation of the QFT sequence
We based our implementation on the more general approach pres-
ented by Ivanov et al. (52). The N = 3 Fourier gate can be obtained with

the circuit FFH3e
ip 1

8s
ð2Þ
z sð3Þzð ÞH2e

ip 1
8s

ð1Þ
z sð2Þz þ 1

16s
ð1Þ
z sð3Þzð Þ H1 FI, where Hk is

the Hadamard gate, applied to ion k, and

FI ¼ e
�ip4 ∑

N

k¼1
1� 2�kþ1
� �

sðkÞz ð13Þ
and

FF ¼ e
�ip4 ∑

N

k¼1
1� 2k�N
� �

sðkÞz ð14Þ

are the phase gates, applied to all N = 3 ions in the beginning and at
the end of the circuit. Note that the phase gates represent a shift of the
phase of the driving field, rather than a physical modification of the
qubit. Hence, they are not associated with infidelity. The circuit can
be written in a more explicit form (up to a global phase of −p/2)

FFR3
p
2
;� p

2

� 	
R3ðpÞeip 1

8s
ð2Þ
z sð3Þzð ÞR2

p
2
;� p

2

� 	

R2ðpÞeip 1
8s

ð1Þ
z sð2Þz þ 1

16s
ð1Þ
z sð3Þzð ÞR1

p
2
;� p

2

� 	
R1ðpÞFI ð15Þ
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
where we have used theHadamard gate decompositionH= iR(p/2,−p/2)R(p).
Below, we will implement this circuit with our gate set.

An operation that requires particular attention is the implementa-

tion of the term eip
1
8s

ð1Þ
z sð2Þz þ 1

16s
ð1Þ
z sð3Þzð Þ. During this process, no net evo-

lution occurs between qubits 2 and 3, whereas a conditional evolution
occurs between qubits 1 and 2 and between qubits 1 and 3. One possible
realization is the consecutive realization of the coupling topologies
where only qubits 1 and 2 or qubits 1 and 3 are coupled. In particular,
one could first isolate qubit 3 for a certain time interval and then iso-
late qubit 2 for an additional time interval. However, such a realization
would be time-consuming, and a parallel decomposition seems advan-
tageous. For the implementation of this operation, we note that if we
surround the gate U(T) (which is based on all the couplings among the
system being present) with two p pulses on one of the qubits, we ef-
fectively change the sign of the coupling of the same ion with the other
ions. If we apply the p pulses to ion 3, we change all couplings Jjk,
where index 3 is present

R3 pð ÞeiT2 J12s
ð1Þ
z sð2Þz þJ13s

ð1Þ
z sð3Þz þJ23s

ð2Þ
z sð3Þzð Þ

�R3 pð Þ ¼ e
iT
2 J12s

ð1Þ
z sð2Þz �J13s

ð1Þ
z sð3Þz �J23s

ð2Þ
z sð3Þzð Þ ð16Þ

Thus, the sequence U(T2)R3(p)U(T1)R3(p) yields

e
i
2 ðT2þT1ÞJ12sð1Þz sð2Þz þðT2�T1ÞJ13sð1Þz sð3Þz þðT2�T1ÞJ23sð2Þz sð3Þzð Þ ð17Þ

Now, if we choose

T1 ¼ p
8

1
J12

þ 1
2J13

� �
ð18Þ

T2 ¼ p
8

1
J12

� 1
2J13

� �
ð19Þ

we get the termeip
1
8s

ð1Þ
z sð2Þz þ 1

16s
ð1Þ
z sð3Þzð Þ and a residual factor. This factor can be

eliminated with properly selected rotations, determined from the expansion

eifsksp ¼ cosf1þ i sinf sksp ð20Þ

where k, p = x, y, z.

Thus, we rearrange the above sequence, which now acquires the form

R2 A2; 3p4ð ÞR3
p
2 ;�p

2ð ÞU23 T3ð Þ
R1 p; 3p16
� �

R2 A1; 3p4ð ÞR3 p;�3p
16

� �
UðT2ÞR3ðpÞUðT1ÞR1ðpÞR2ðpÞR3ðpÞH1

ð21Þ

where the duration T3 and the pulse areas A1 and A2 are obtained
from the following set of equations

1ffiffiffi
2

p ei
p
16ðaþ2ÞeiJ23T3=2 � sin

A1

2
sin

A2

2
eiJ23T3 þ cos

A1

2
cos

A2

2
¼ 0 ð22Þ
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1ffiffiffi
2

p ei
p
16ða�2ÞeiJ23T3=2 � sin

A1

2
cos

A2

2
eiJ23T3 � cos

A1

2
sin

A2

2
¼ 0 ð23Þ

Here, a = J23/J13. Note that the sequence in Eq. 21 is generic in the
sense that it is valid for any spin-spin coupling J. This sequence was
further optimized as described in the main text.

State fidelities
To validate the QFT, we implemented the appropriate pulse sequence
after initializing the three-qubit system in one of the computational
basis states or in some exemplary superposition states. In the next
step, we reconstructed the fidelity F = 〈y|r|y〉 of the three-qubit state
r after the QFT, given the ideal result |y〉. Further analysis takes into
account the single-qubit fidelities in each qubit’s subspace, F1, F2, and
F3, and the full three-qubit state fidelity F.

The QFT transfers the input states investigated here to fully sepa-
rable product states |y〉 = |y1〉|y2〉|y3〉. Under the assumption of a
fully separable state after the QFT, r = r1 × r2 × r3, we derived the
single-qubit state fidelities Fn = 〈yn|rn|yn〉 from Ramsey fringes (phase
and amplitude).

The three-qubit state fidelity is measured without any assumption
on r. The fidelity F = 〈y|r|y〉 can be written as F = 〈000|V†rV|000〉,
where V denotes local rotations that connect the ideal outcome |y〉
with the ground state |000〉. The procedure is therefore to apply ap-
propriate single-qubit rotations V at the end of the QFT just before the
projective measurement takes place. The probability of detecting the
state |000〉 then yields the fidelity F. The results are summarized in
Table 1.

We point out that we have carefully selected the input states in
Table 1 in the following sense: With the first eight measurements,
we made sure that the QFT is applied correctly to all eight computa-
tional basis states. Thus, we verified that each column vector in the
measured QFT matrix is correct, possibly up to a column-specific
global phase, which may vary from column to column. Next, we ver-
ified that these column-specific phases are equal, so that the correct
QFT matrix is obtained up to a global phase. For this purpose, we
performed seven additional measurements on superpositions. The first
four measurements indicate that column 1 is in phase with column 5,
column 2 is in phase with column 6, column 3 is in phase with column
7, and column 4 is in phase with column 8. The last three measurements,
respectively, verify that column 1 is in phase with column 3, column 2 is
in phase with column 4, and column 1 is in phase with column 2.
With the described 15 measurements, we validated the QFT matrix
up to a global phase.

For the computational basis states, the average state fidelity is 〈F〉 =
0.58(5). As one can also see, the results do not significantly differ for
the investigated computational basis states and the exemplary super-
position states. One may further notice that the product F1 × F2 × F3
that is equal to the three-qubit state fidelity under the assumption of
fully separable final states and the measured three-qubit state fidelities
F are in agreement.

Technical imperfections in the setup
Experimental imperfections in the setup are sources of error. The
most dominant source at present is the magnetic field noise that
causes dephasing of the qubits. During the conditional evolution time,
magnetic field noise is counteracted by DD pulses. However, these
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
pulses are not perfect, due to slow drifts of the qubits’ addressing fre-
quencies (40), and can cause a seemingly random behavior of the qu-
bits, when many DD pulses are applied. Another instrumental error is the
nonperfect single-shot detection efficiency. This causes a mistagging of
the results and, hence, effectively a seemingly random outcome as well.

These different error sources have consequences for the performance
of the QFT that differ for different input states of the algorithm. Qubits
that are in a superposition state during the sequence are affected by
dephasing, whereas a qubit in an energy eigenstate is not. Also for
the histograms from which the periods are deduced (compare Fig. 4
in the main text), one may notice a very good performance for the
input state |111〉. The reason is that the expected ideal histogram of
this output state is the same as that for a totally dephased mixture of
states. Therefore, the results are almost not affected by the present
technical imperfections.

To date, there is no magnetic shielding or active stabilization of the
magnetic field at the location of the ions. Adding this is expected to
substantially improve coherence times and fidelities. In addition, the
single-shot readout fidelity of the experiments reported here is 0.96 for
a bright or a dark state and will be improved either by more advanced
analysis (66) or by changes of the optical detection setup (67).

Simulations
In independent experiments, we experimentally quantified the expo-
nential decay of single-qubit coherences during the conditional evolu-
tion times. Hence, we can simulate the dephasing that leads to the
partially dephased three-qubit density matrix rdephased. In this matrix,
the single-qubit coherences are partially decayed, and the particular
Table 1. State fidelities after application of the QFT. The single-qubit
state fidelities F1, F2, and F3 are estimated from Ramsey fringes and ex-
citation probabilities after applying the QFT. From correlation measure-
ments, the three-qubit state fidelities F are deduced.
Initial state
 F1
 F2
 F3
 F1 × F2 × F3
 F
|000〉
 0.74(5)
 0.88(5)
 0.82(5)
 0.53(6)
 0.59(2)
|001〉
 0.77(4)
 0.81(2)
 0.86(4)
 0.53(4)
 0.54(2)
|010〉
 0.76(7)
 0.86(4)
 0.84(4)
 0.55(4)
 0.55(2)
|011〉
 0.77(5)
 0.84(2)
 0.83(4)
 0.54(5)
 0.54(2)
|100〉
 0.74(5)
 0.89(5)
 0.88(5)
 0.58(6)
 0.59(2)
|101〉
 0.73(4)
 0.85(2)
 0.90(4)
 0.56(4)
 0.66(2)
|110〉
 0.70(4)
 0.78(4)
 0.90(3)
 0.49(4)
 0.57(2)
|111〉
 0.68(4)
 0.79(3)
 0.89(4)
 0.48(4)
 0.63(2)
|+00〉
 0.84(2)
 0.78(5)
 0.86(5)
 0.56(5)
 0.65(2)
|+01〉
 0.83(2)
 0.84(3)
 0.81(4)
 0.56(4)
 —
|+10〉
 0.81(2)
 0.77(4)
 0.76(4)
 0.47(3)
 —
|+11〉
 0.82(2)
 0.81(2)
 0.80(4)
 0.54(3)
 —
|++0〉
 0.79(2)
 0.74(2)
 0.88(4)
 0.51(3)
 —
|++1〉
 0.84(2)
 0.73(2)
 0.75(4)
 0.46(3)
 —
|+++〉
 0.86(2)
 0.79(2)
 0.77(2)
 0.52(3)
 0.54(2)
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decay depends on the duration during which a single qubit was in a
superposition state. The experimentally determined decay constant is
0.0625/ms.

Furthermore, we deduced from separate experiments the effect of a
seemingly chaotic behavior due to imperfect DD pulses and a limited
single-shot readout fidelity. These two effects cause a change between
the qubit states |0〉 and |1〉 and can be treated by mixing the three-qubit
density matrix with white noise: ~rsimulated ¼ z1þ ð1� zÞrdephased.

The resulting fidelity affected by dephasing of the qubits and by
white noise reads

~F ¼ z=8þ ð1� zÞFdephased ð24Þ

Here, Fdephased describes the fidelity due to pure dephasing without
any further instrumental errors, and the phenomenological parameter
z = 0.25 describes the amount of white noise in the final state. These
phenomenological parameters (the decay constant and z) allow us to
simulate the time evolution of the pulse sequence that realizes the
QFT in a way that includes the experimental imperfections.

We compared the simulated results to the recorded data for the
experiments in which the periods of quantum states were computed
by our quantum computer prototype. In detail, we computed the SSO
between the measured probabilities pi and the simulated outcomes

si asSsimðfpig; fsigÞ ¼ ∑
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pi � si

p� �2

. For all data sets, we obtained an

SSO close to unity, and the average of all data sets was 0.98(−3+2).
Therefore, we conclude that the limitations of the experimental results
are dominated by the experimental imperfections that are part of our
model.

Error budget and perspectives
On the basis of our measurements and simulations of the experiment,
we now further discuss how the infidelities due to the different error
sources contributes to the average fidelity of ~F ¼ 0:58ð5Þ. Using Eq. 24
and setting z = 0, we conclude that if the system were subjected to
residual dephasing only, the fidelity would be limited to Fdephased =
0.73. White noise only (that is, considering only errors in detection
and DD pulses by setting Fdephased = 1 in Eq. 24) would limit the re-
sulting fidelity in Eq. 24 to ~F ¼ 1� 0:22 ¼ 0:78 (for z = 0.25), where
0.12 = 1 − 0.963 is the contribution to the infidelity from the limited
single-shot detection fidelity and the remaining infidelity (0.10) is
caused by errors in the DD sequences.

This error budget allows us to predict the possible performance in
an improved experimental setup. In the present setup, the magnet gra-
dient experienced by the ions is 19 T/m. If the gradient is enhanced to
150 T/m, as was recently reported by Lekitsch et al. (60), the coupling
strengths, being proportional to the gradient squared, will be about a
factor of 60 higher. Therefore, such a gradient will speed up the
algorithm by the same factor, resulting in a total duration of only
about 140 ms.

In this situation, there would be no need for sequences of DD
pulses because a single SE pulse already enhances the coherence time
to a few milliseconds in our setup. Hence, the error due to imperfect
DD pulses will be eliminated. For discussing the fault tolerance of a
quantum gate, state preparation and detection errors can usually be
neglected. Therefore, the gate fidelity will only be limited by errors
Piltz et al. Sci. Adv. 2016; 2 : e1600093 8 July 2016
of the few remaining pulses that realize the QFT. Because MW-driven
single-qubit gates can be realized with high fidelity (31), a gate fidelity
of the QFT in the range of 0.99 is realistic in a system that features a
gradient of about 150 T/m. Measures to increase the qubit coherence
time (shielding and active stabilization of magnetic fields) would fur-
ther increase this fidelity.
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